<acronym id="6i0ao"><small id="6i0ao"></small></acronym>
<acronym id="6i0ao"><center id="6i0ao"></center></acronym>
歡迎來到文庫吧! | 幫助中心 堅持夢想,走向成功!
文庫吧
首頁 文庫吧 > 資源分類 > DOC文檔下載
 

外文文獻翻譯--超聲測距系統設計-其他專業.doc

  • 資源ID:7428       資源大小:183.50KB        全文頁數:21頁
  • 資源格式: DOC        下載權限:游客/注冊會員/VIP會員    下載費用:10
換一換
游客快捷下載 游客一鍵下載
會員登錄下載
下載資源需要10元   |   0.1元文檔測試下載

支付方式: 微信支付    支付寶   
驗證碼:   換一換

      加入VIP,下載共享資源
 
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網頁到桌面,既可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經過壓縮,下載后原文更清晰   

外文文獻翻譯--超聲測距系統設計-其他專業.doc

Ultrasonic ranging system design Publication title Sensor Review. Bradford 1993.Vol. ABSTRACT Ultrasonic ranging technology has wide using worth in many fields, such as the industrial locale, vehicle navigation and sonar engineering. Now it has been used in level measurement, self-guided autonomous vehicles, fieldwork robots automotive navigation, air and underwater target detection, identification, location and so on. So there is an important practicing meaning to learn the ranging theory and ways deeply. To improve the precision of the ultrasonic ranging system in hand, satisfy the request of the engineering personnel for the ranging precision, the bound and the usage, a portable ultrasonic ranging system based on the single chip processor was developed. Keywords Ultrasound, Ranging System, Single Chip Processor 1. Introductive With the development of science and technology, the improvement of people’s standard of living, speeding up the development and construction of the city. Urban drainage system have greatly developed their situation is construction improving. However, due to historical reasons many unpredictable factors in the synthesis of her time, the city drainage system. In particular drainage system often lags behind urban construction. Therefore, there are often good building excavation has been building facilities to upgrade the drainage system phenomenon. It brought to the city sewage, and it is clear to the city sewage and drainage culvert in the sewage treatment system. Comfort is very important to people’s lives. Mobile robots designed to clear the drainage culvert and the automatic control system Free sewage culvert clear guarantee robots, the robot is designed to clear the culvert sewage to the core. Control system is the core component of the development of ultrasonic range finder. Therefore, it is very important to design a good ultrasonic range finder. 2. A principle of ultrasonic distance measurement The application of AT89C51 SCM is a major piece of computer components are integrated into the chip micro-computer. It is a multi-interface and counting on the micro-controller integration, and intelligence products are widely used in industrial automation. and MCS-51 microcontroller is a typical and representative. Microcontrollers are used in a multitude of commercial applications such as modems, motor-control systems, air conditioner control systems, automotive engine and among others. The high processing speed and enhanced peripheral set of these microcontrollers make them suitable for such high-speed event-based applications. However, these critical application domains also require that these microcontrollers are highly reliable. The high reliability and low market risks can be ensured by a robust testing process and a proper tools environment for the validation of these microcontrollers both at the component and at the system level. Intel Plaform Engineering department developed an object-oriented multi-threaded test environment for the validation of its AT89C51 automotive microcontrollers. The goals of this environment was not only to provide a robust testing environment for the AT89C51 automotive microcontrollers, but to develop an environment which can be easily extended and reused for the validation of several other future microcontrollers. The environment was developed in conjunction with Microsoft Foundation Classes AT89C51. 1.1 Features * Compatible with MCS-51 Products * 2Kbytes of Reprogrammable Flash Memory Endurance 1,000Write/Erase Cycles * 2.7V to 6V Operating Range * Fully Static operation 0Hz to 24MHz * Two-level program memory lock * 128x8-bit internal RAM * 15programmable I/O lines * Two 16-bit timer/counters * Six interrupt sources *Programmable serial UART channel * Direct LED drive output * On-chip analog comparator * Low power idle and power down modes 1.2 Description The AT89C2051 is a low-voltage, high-performance CMOS 8-bit microcomputer with 2Kbytes of flash programmable and erasable read only memory PEROM. The device is manufactured using Atmel’s high density nonvolatile memory technology and is compatible with the industry standard MCS-51 instruction set and pinout. By combining a versatile 8-bit CPU with flash on a monolithic chip, the Atmel AT89C2051 is a powerful microcomputer which provides a highly flexible and cost effective solution to many embedded control applications. The AT89C2051 provides the following standard features 2Kbytes of flash, 128bytes of RAM, 15 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, a precision analog comparator, on-chip oscillator and clock circuitry. In addition, the AT89C2051 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The idle mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The power down mode saves the RAM contents but freezer the oscillator disabling all other chip functions until the next hardware reset. 1.3 Pin Configuration 1.4 Pin Description VCC Supply voltage. GND Ground. Prot 1 Prot 1 is an 8-bit bidirectional I/O port. Port pins P1.2 to P1.7 provide internal pullups. P1.0 and P1.1 require external pullups. P1.0 and P1.1 also serve as the positive input AIN0 and the negative input AIN1, respectively, of the on-chip precision analog comparator. The port 1 output buffers can sink 20mA and can drive LED displays directly. When 1s are written to port 1 pins, they can be used as inputs. When pins P1.2 to P1.7 are used as input and are externally pulled low, they will source current IIL because of the internal pullups. Port 3 Port 3 pins P3.0 to P3.5, P3.7 are seven bidirectional I/O pins with internal pullups. P3.6 is hard-wired as an input to the output of the on-chip comparator and is not accessible as a general purpose I/O pin. The port 3 output buffers can sink 20mA. When 1s are written to port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source current IIL because of the pullups. Port 3 also serves the functions of various special features of the AT89C2051 as listed below. 1.5 Programming the Flash The AT89C2051 is shipped with the 2 Kbytes of on-chip PEROM code memory array in the erased state i.e., contentsFFH and ready to be programmed. The code memory array is programmed one byte at a time. Once the array is programmed, to re-program any non-blank byte, the entire memory array needs to be erased electrically. Internal address counter the AT89C2051 contains an internal PEROM address counter which is always reset to 000H on the rising edge of RST and is advanced applying a positive going pulse to pin XTAL1. Programming algorithm to program the AT89C2051, the following sequence is recommended. 1. power-up sequence Apply power between VCC and GND pins Set RST and XTAL1 to GND With all other pins floating , wait for greater than 10 milliseconds 2. Set pin RST to ‘H’ set pin P3.2 to ‘H’ 3. Apply the appropriate combination of ‘H’ or ‘L’ logic to pins P3.3, P3.4, P3.5, P3.7 to select one of the programming operations shown in the PEROM programming modes table. To program and Verify the Array 4. Apply data for code byte at location 000H to P1.0 to P1.7.5.Raise RST to 12V to enable programming. 5. Pulse P3.2 once to program a byte in the PEROM array or the lock bits. The byte-write cycle is self-timed and typically takes 1.2ms. 6. To verify the programmed data, lower RST from 12V to logic ‘H’ level and set pins P3.3 to P3.7 to the appropriate levels. Output data can be read at the port P1 pins. 7. To program a byte at the next address location, pulse XTAL1 pin once to advance the internal address counter. Apply new data to the port P1 pins. 8. Repeat steps 5 through 8, changing data and advancing the address counter for the entire 2 Kbytes array or until the end of the object file is reached. 9. Power-off sequence set XTAL1 to ‘L’ set RST to ‘L’ Float all other I/O pins Turn VCC power off 2.1 The principle of piezoelectric ultrasonic generator Piezoelectric ultrasonic generator is the use of piezoelectric crystal resonators to work. Ultrasonic generator, the internal structure as shown, it has two piezoelectric chip and a resonance plate. When it’s two plus pulse signal, the frequency equal to the intrinsic piezoelectric oscillation frequency chip, the chip will happen piezoelectric resonance, and promote the development of plate vibration resonance, ultrasound is generated. Conversely, it will be for vibration suppression of piezoelectric chip, the mechanical energy is converted to electrical signals, then it becomes the ultrasonic receiver. The traditional way to determine the moment of the echo’s arrival is based on thresholding the received signal with a fixed reference. The threshold is chosen well above the noise level, whereas the moment of arrival of an echo is defined as the first moment the echo signal surpasses that threshold. The intensity of an echo reflecting from an object strongly depends on the object’s nature, size and distance from the sensor. Further, the time interval from the echo’s starting point to the moment when it surpasses the threshold changes with the intensity of the echo. As a consequence, a considerable error may occur even two echoes with different intensities arriving exactly at the same time will surpass the threshold at different moments. The stronger one will surpass the threshold earlier than the weaker, so it will be considered as belonging to a nearer object. 2.2 The principle of ultrasonic distance measurement Ultrasonic transmitter in a direction to launch ultrasound, in the moment to launch the beginning of time at the same time, the spread of ultrasound in the air, obstacles on his way to return immediately, the ultrasonic reflected wave received by the receiver immediately stop the clock. Ultrasound in the air as the propagation velocity of 340m/s, according to the timer records the time t, we can calculate the distance between the launch distance barriers, that is s340t / 2 3. Ultrasonic Ranging System for the Second Circuit Design System is characterized by single-chip microcomputer to control the use of ultrasonic transmitter and ultrasonic receiver since the launch from time to time, single-chip selection of 875, economic-to-use, and the chip has 4K of ROM, to facilitate programming. 3.1 40 kHz ultrasonic pulse generated with the launch Ranging system using the ultrasonic sensor of piezoelectric ceramic sensors UCM40, its operating voltage of the pulse signal is 40kHz, which by the single-chip implementation of the following procedures to generate. puzel mov 14h, 12h; ultrasonic firing continued 200ms Here cpl p1.0; output 40kHz square wave nop; nop; nop; djnz 14h, here; ret Ranging in front of single-chip termination circuit P1.0 input port, single chip implementation of the above procedure, the P1.0 port in a 40kHz pulse output signal, after amplification transistor T, the drive to launch the first ultrasonic UCM40T, issued 40kHz ultrasonic pulse, and the continued launch of 200ms. Ranging the right and the left side of the circuit, respectively, then input port P1.1 and P1.2, the working principle and circuit in front of the same location. 3.2 Reception and processing of ultrasonic Used to receive the first launch of the first pair UCM40R, the ultrasonic pulse modulation signal into an alternating voltage, the op-amp amplification IC1A and after polarization IC1B to IC2. IC2 is locked loop with audio decoder chip LM567, internal voltage-controlled oscillator center frequency of f01/1.1R8C3, capacitor C4 determine their target bandwidth. R8-conditioning in the launch of the high jump 8 feet into a low-level, as interrupt request signals to the single-chip processing. Ranging in front of single-chip termination circuit output port INT0 interrupt the highest priority, right or left location of the output circuit with output gate IC3A access INT1 port single-chip, while single-chip P1.3 and P1.4 received input IC3A, interrupted by the process to identify the source of inquiry to deal with, interrupt priority level for the first left right after. Part of the source code is as follows Receivel push psw push acc clr ex1; related external interrupt 1 jnb p1.1, right; P1.1 pin to 0, ranging from right to interrupt service routine circuit jnb p1.2, left; P1.2 pin to 0, to the left ranging circuit interrupt service routine return SETB EX1; open external interrupt 1 pop acc pop psw reti right ; right location entrance circuit interrupt service routine Ajmp Return left ; left ranging entrance circuit interrupt service routine Ajmp Return 3.3 The calculation of ultrasonic propagation time When you start firing at the same time start the single-chip circuitry within the timer T0, the use of timer counting function records the time and the launch of ultrasonic reflected wave received time. When you receive the ultrasonic reflected wave, the receiver circuit output a negative jump in the end of INT0 or INT1 interrupt request generates a signal, single-chip microcomputer in response to external interrupt request, the implementation of the external interrupt service subroutine, read the time difference, calculating the distance. Some of its source code is as follows RECEIVE0 PUSH PSW PUSH ACC CLR EX0; related external interrupt 0 MOV R7, TH0; read the time value MOV R6, TL0 CLR C MOV A, R6 SUBB A, 0BBH; calculate the time difference MOV 31H, A; storage results MOV A, R7 SUBB A, 3CH MOV 30H, A SETB EX0; open external interrupt 0\ POP ACC POP PSW RETI For a

注意事項

本文(外文文獻翻譯--超聲測距系統設計-其他專業.doc)為本站會員(xianrenzhilu)主動上傳,文庫吧僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。 若此文所含內容侵犯了您的版權或隱私,請立即通知文庫吧(發送郵件至[email protected]或直接QQ聯系客服),我們立即給予刪除!

溫馨提示:如果因為網速或其他原因下載失敗請重新下載,重復下載不扣分。




關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服點擊這里,給文庫吧發消息,QQ:1548881058 - 聯系我們

[email protected] 2015-2021 wenkub網站版權所有
經營許可證編號:鄂ICP備17016276 

收起
展開
北京pk10双面盘预测
<acronym id="6i0ao"><small id="6i0ao"></small></acronym>
<acronym id="6i0ao"><center id="6i0ao"></center></acronym>
<acronym id="6i0ao"><small id="6i0ao"></small></acronym>
<acronym id="6i0ao"><center id="6i0ao"></center></acronym>