<acronym id="6i0ao"><small id="6i0ao"></small></acronym>
<acronym id="6i0ao"><center id="6i0ao"></center></acronym>
欢迎来到文库吧! | 帮助中心 坚持梦想,走向成功!
文库吧
首页 文库吧 > 资源分类 > DOC文档下载

外文翻译——基于注塑模具钢研磨和抛光工序的自动化表面处理-模具设计.doc

  • 资源ID:7487       资源大小:994.00KB        全文页数:22页
  • 资源格式: DOC        下载权限:游客/注册会员/VIP会员    下载费用:10
换?#25442;?/a>
游客快捷下载 游客一键下载
会员登录下载

支付方式: 微信支付    支付宝   
验证码:   换?#25442;?/a>

      加入VIP,下载共享资源
 
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,既可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰   

外文翻译——基于注塑模具钢研磨和抛光工序的自动化表面处理-模具设计.doc

译文标题 基于注塑模具钢研磨和抛光工序的自动化表面处理 原文标题 Based on the injection mold steel grinding and polishing processes automated surface treatment 作 者 Chao-Chang A. Chen Wen-Tu Li 译 名 晁常 温途利 国 籍 美国 原文出处 Shiou FJ, Chen CH 2003 Determination of optimal ball-burnishing parameters for plastic injection molding steel. Int J Adv Manuf Technol 基于注塑模具钢研磨和抛光工序的自动化表面处理 摘要 本文研究了注塑模具钢自动研磨与球面抛光加工工序的可能性,这种注塑模具钢PDS5的塑性曲面是在数控加工中心完成的。这项研究已经完成了磨削刀架的设计与制造。 最佳表面研磨?#38382;?#26159;在钢铁PDS5 的加工中心测定的。对于PDS5注塑模具钢的最佳球面研磨?#38382;?#26159;以下一系列的组合研磨材料的磨料为粉红氧化铝,进给量500毫米/分钟,磨削深度20微米,磨削转速为18000RPM。用优化的?#38382;?#36827;行表面研磨,表面粗糙度Ra值可由大约1.60微米改善至0.35微米。 用球抛光工艺和?#38382;?#20248;化抛光,可以进一步改善表面粗糙度Ra值从0.343微米至0.06微米左右。在模具内部曲面的测试部分,用最佳?#38382;?#30340;表面研磨、抛光,曲面表面粗糙度就可以提高约2.15微米到0 0.07微米。 关键词 自动化表面处理 抛光 磨削加工 表面粗糙度 田口方法 一、引言 塑胶工程材料由于其重要特点,如耐化学腐蚀性、低密度、易于制造,并已日渐取代金属部件在工业中广泛应用。 注塑成?#25237;?#20110;塑料制品是一个重要工艺。注塑模具的表面质量是设计的本质要求,因为它直接影响了塑胶产品的外观和性能。 加工工艺如球面研磨、抛光常用于改善表面光洁度。 研磨工具轮子的安装已广泛用于传统模具的制造产业。自动化表面研磨加工工具的几?#25991;?#22411;将介绍。自动化表面处理的球磨研磨工具将得到示范和开发。 磨削速度, 磨削深度,进给速率和砂轮尺寸、研磨材料特性(如磨料粒度大小)是球形研磨工艺中主要的?#38382;?#22914;图1(球面研磨过程示意图)所示。注塑模具钢的球面研磨最优化?#38382;?#30446;?#21543;?#26410;在文献得到确切的依据。 步距 研磨高度 球磨研磨 进给速度 工作台 图1 球面研磨过程示意图 进给 研磨球 工作台 研磨深度 研磨表面 近年来 ,已经进行了一些研究,?#33539;?#20102;球面抛光工艺的最优?#38382;?#22270;2 (球面抛光过程示意图)。 ?#28909;紓?#20154;们发现, 用碳化钨球滚压的方法可以使工件表面的塑?#21592;?#24418;减少,从而改善表面粗糙度、表面硬度、抗疲劳强度。 抛光的工艺的过程是由加工中心和车床共同完成的。对表面粗糙度有重大影响的抛光工艺主要?#38382;?#20027;要是球或滚子材料,抛光力, 进给速率,抛光速度,润滑、抛光率及其他因素?#21462;?#27880;塑模具钢PDS5的表面抛光的?#38382;?#20248;化,分别结合了油脂润滑?#31890;?#30899;化钨球,抛光速度200毫米/分钟,抛光力300牛,40微米的进给量。采用最佳?#38382;?#36827;行表面研磨和球面抛光的深度为2.5微米。 通过抛光工艺,表面粗糙度可以改善大致为40%至90%。 图2 球面抛光过程示意图 此项目研究的目的是,发展注塑模具钢的球形研磨和球面抛光工序,这种注塑模具钢的曲面实在加工中心完成的。表面光洁度的球研磨与球抛光的自动化流程工序,如图3所示。 我们开始自行设计和制造的球面研磨工具及加工中心的对刀装置。利用田口正?#29615;ǎ范?#20102;表面球研磨最佳?#38382;?#36873;择为田口L18?#36884;?#38453;实验相应的四个因素和三个层次。 用最佳?#38382;?#36827;行表面球研磨则适用于一个曲面表面光洁度要求较高的注塑模具。 为了改善表面粗糙, 利用最佳球面抛光工艺?#38382;?#20877;进行对表层打磨。 PDS试样的设计与制造 选择最佳矩阵实验因子 ?#33539;?#26368;佳?#38382;?实施实验 分析并?#33539;?#26368;佳因子 进行表面抛光 应用最佳?#38382;?#21152;工曲面 测量试样的表面粗糙度 球研磨和抛光装置的设计与制造 图3自动球面研磨与抛光工序的流程图 二、球研磨的设计和对准装置 实施过程中可能出现的曲面的球研磨,研磨球的中心应和加工中心的Z轴相一致。 球面研磨工具的安装及调整装置的设计,如图4(球面研磨工具及其调整装置)所示。电动磨床展开了两个具有可调支撑螺丝的刀架。磨床中心正好与具有辅助作用的圆锥槽线配合。 拥有磨床的球接轨,当两个可调支撑螺丝被收紧?#20445;?#20854;后的对准部件就可以拆除。研磨球中心坐标偏差约为5微米, 这是衡量一个数控坐标测量机性能的重要标准。 机床的机械振动力是被螺旋弹簧所吸收。球形研磨球和抛光工具的安装,如图5(a. 球面研磨工具的?#35745;? b.球抛光工具的?#35745;?#25152;示。为使球面磨削加工和抛光加工的进行,主轴通过球锁机制而被锁定。 模柄 弹簧 工具可调支撑 紧固螺钉 磨球 自动研磨 磨球组件 图4 球面研磨工具及其调整装置 图5 a. 球面研磨工具的?#35745;? b.球抛光工具的?#35745;?三、矩阵实验的规划 3.1田口正交表 利用矩阵实验田口正?#29615;ǎ?#21487;以?#33539;ú问?#30340;有影响程度。 为了配合上述球面研磨?#38382;?#35813;材料磨料的研磨球?#26412;?0毫米,进给速率,研磨深度,在次研究中电气磨床被假定为四个因素,?#20184;?#20026;从A到D(见表1实验因素和水平)。三个层次的因素涵盖了不同的范围特征,并用了数字1、2、3标明。挑选三类磨料,即碳化硅,白色氧化铝,粉红氧化铝来研究. 这三个数值的大小取决于每个因素实验结果。选定L18型正交矩阵进行实验,进而研究四三级因素的球形研磨过程。 表1实验因素和水平 因素 水平 1 2 3 A. 碳化硅 白色氧化铝 粉红氧化铝 B. 50 100 200 C.研磨深度(m) 20 50 80 D. 12000 18000 24000 3.2数据分析的界定 工程设计问题,可以分为较小而好的类型,象征性最?#32654;?#22411;,大而?#32654;?#22411;,目标取向类型?#21462;?信噪比S/N的比值,常作为目标函数来优化产品或者工艺设计。 被加工面的表面粗糙度值经过?#23454;?#22320;组合磨削?#38382;?#24212;小于原来的未加工表面。 因此,球面研磨过程属于工程问题中的小而?#32654;?#22411;。这里的信噪比(S/N),η,按下列公式定义 η ?10 log 平方等于质量特性 ?10 log (1) 这里, y不同噪声条件下所观察的质量特性 n实验?#38382;??#29992;?#20010;L18型正交实验得到的信噪比(S/N)数据,经计算后,运用差异分析技术变异和歼比检验来测定每一个主要的因素。 优化小而?#32654;?#22411;的工程问题问题更是尽量?#21151;?#26368;大而定。各级η选择的最大化将对最终的η因素有重大影响。 最优条件可视研磨球而待定。 四、实验工作和结果 这项研究使用的材料是PDS5工具钢相当于艾西塑胶模具, 它常用于大型注塑模具产品在国内汽车零件领域和国内设备。 该材料的硬度约HRC33HS46。 具体好处之一是, 由于其特殊的热处理前处理,模具可直接用于未经进一步加工工序而对这一材料进行加工。式样的设计和制造,应使它们可以安装在底盘,来测量相应的反力。 PDS5试样的加工完毕后,装在大底盘上在三坐标加工中心进行了铣削,这种加工中心是由钢铁公司所生产中压型三号,配备了FANUC-18M公司的数控控制器0.99型。用hommelwerket4000设备来测量前机加工前表面的粗糙度,使其可达到1.6微米。 图6试验显示了球面磨削加工工艺的设置。 一个由Renishaw公司生产的视频触摸触发探头,安装在加工中心上,来测量和?#33539;?#21644;原始式样的协调。 数控代码所需要的磨球路径由PowerMILL软件产。这些代码经过RS232串口界面,可?#28304;?#36865;到装有控制器的数控加工中心上。 加工中心 数控机床 电脑 图6 完成了L18?#36884;?#38453;实验后,表2 (PDS5试样光滑表层的粗糙度)总结了光滑表面的粗糙度RA值,计算了每一个L18?#36884;?#38453;实验的信噪比(S/N),从而用于方程(1)。通过表2提供的各个数值,可以得到四种不同程度因素的平均信噪比(S/N),在图7中已用图表显示。 表2 PDS5试样光滑表层的粗糙度 实验 序号 A B C D S/NηdB Mean 1 1 1 1 1 0.35 0.35 0.35 9.119 0.350 2 1 2 2 2 0.37 0.36 0.38 8.634 0.370 3 1 3 3 3 0.41 0.44 0.40 7.597 0.417 4 2 1 2 3 0.63 0.65 0.64 3.876 0.640 5 2 2 3 1 0.73 0.77 0.78 2.380 0.760 6 2 3 1 2 0.45 0.42 0.39 7.530 0.420 7 3 1 3 2 0.34 0.31 0.32 9.801 0.323 8 3 2 1 3 0.27 0.25 0.28 11.471 0.267 9 3 3 2 1 0.32 0.32 0.32 9.897 0.320 10 1 1 2 2 0.35 0.39 0.40 8.390 0.380 11 1 2 3 3 0.41 0.50 0.43 6.968 0.447 12 1 3 1 1 0.40 0.39 0.42 7.883 0.403 13 2 1 1 3 0.33 0.34 0.31 9.712 0.327 14 2 2 2 1 0.48 0.50 0.47 6.312 0.483 15 2 3 3 2 0.57 0.61 0.53 4.868 0.570 16 3 1 3 1 0.59 0.55 0.54 5.030 0.560 17 3 2 1 2 0.36 0.36 0.35 8.954 0.357 18 3 3 2 3 0.57 0.53 0.53 5.293 0.543 控制因素 信噪比 图7 控制影响因素 球面研磨工艺的目标,就是通过?#33539;?#27599;一种因子的最佳优化程度值,来使试样光滑表层的表面粗糙度值达到最小。因为? log是一个减函数,我们应当使信噪比(S/N)达到最大。因此,我们能够?#33539;?#27599;一种因子的最优程度使得η的值达到最大。因此基于这个点阵式实验的最?#25243;?#36895;应该是18000RPM,如表3(优化组合球面研磨?#38382;?#25152;示。 表3 优化组合球面研磨?#38382;?因素 水平 白色氧化铝 50mm/min 20μm 18000rpm 从田口矩阵实验获得的球面研磨优化?#38382;?#36866;用于曲面光滑的模具,从而改善表面的粗糙度。选择香水瓶为一个测试载体。对于被测物体的模具数控加工中?#27169;?#30001;PowerMILL软件来模拟测试。经过精?#24120;?#36890;过使用从田口矩阵实验获得的球面研磨优化?#38382;?#27169;具表面进一步光滑。紧?#24188;?使用打磨抛光的最佳?#38382;?#26469;对光滑曲面进行抛光工艺,进一步改善了被测物体的表面粗糙度。见图 9。模具内部的表面粗糙度用hommelwerket4000设备来测量。模具内部的表面粗糙度RA的平均值为2.15微米,光滑表面粗糙度RA的平均值为0.45微米,抛光表面粗糙度RA的平均值为0.07微米。被测物体的光滑表面的粗糙度改善了2.15-0.45/2.1579.1%,抛光表面的粗糙度改善了2.15-0.07/2.1596.7%。 抛光表面 Ra0.07μm 内部表面 Ra2.15μm 光滑表面 Ra0.45μm 图8 被测物体表面粗糙度 五、结论 在这项工作中,对注塑模具的曲面进行了自动球面研磨与球面抛光加工,并将其工艺最佳?#38382;?#25104;功地运用到加工中心上。 设计和制造了球面研磨装置及其对准组件。通过实施田口L18?#36884;?#38453;进行实验,?#33539;?#20102;球面研磨的最佳?#38382;?#23545;于PDS5注塑模具钢的最佳球面研磨?#38382;?#26159;以下一系列的组合材料的磨料为粉红氧化铝,进给量料500毫米/分钟,磨削深度20微米,转速为18000RPM。通过使用最佳球面研磨?#38382;?#35797;样的表面粗糙度Ra值从约1.6微米提高到0.35微米。应用最优化表面磨削?#38382;?#21644;最佳抛光?#38382;?#26469;加工模具的内部光滑曲面,可使模具内部的光滑表面改善79.1%,抛光表面改善96.7%。 鸣谢 作者?#34892;?#20013;国国家科学理事会?#21592;?#27425;研究的支持, NSC 89-2212-E-011-059。 Automated surface finishing of plastic injection mold steel with spherical grinding and ball burnishing processes Abstract This study investigates the possibilities of automated spherical grinding and ball burnishing surface finishing processes in a freeform surface plastic injection mold steel PDS5 on a CNC machining center. The design and manufacture of a grinding tool holder has been accomplished in this study. The optimal surface grinding parameters were determined using Taguchi’s orthogonal array method for plastic injection molding steel PDS5 on a machining center. The optimal surface grinding parameters for the plastic injection mold steel PDS5 were the combination of an abrasive material of PA Al2O3, a grinding speed of 18 000 rpm, a grinding depth of 20 μm, and a feed of 50 mm/min. The surface roughness Ra of the specimen can be improved from about 1.60 μm to 0.35 μm by using the optimal parameters for surface grinding. Surface roughness Ra can be further improved from about 0.343 μm to 0.06 μm by using the ball burnishing process with the optimal burnishing parameters. Applying the optimal surface grinding and burnishing parameters sequentially to a fine-milled freeform surface mold insert, the surface roughness Ra of freeform surface region on the tested part can be improved from about 2.15 μm to 0.07 μm. Keywords Automated surface finishing Ball burnishing process Grinding process Surface roughness Taguchi’s method 1 Introduction Plastics are important engineering materials due to their specific characteristics, such as corrosion resistance, resistance to chemicals, low density, and ease of manufacture, and have increasingly replaced metallic components in industrial applications. Injection molding is one of the important forming processes for plastic products. The surface finish quality of the plastic injection mold is an essential requirement due to its direct effects on the appearance of the plastic product. Finishing processes such as grinding, polishing and lapping are commonly used to improve the surface finish. The mounted grinding tools wheels have been widely used in conventional mold and die finishing industries. The geometric model of mounted grinding tools for automated surface finishing processes was introduced in. A finishing process mode of spherical grinding tools for automated surface finishing systems was developed in. Grinding speed, depth of cut, feed rate, and wheel properties such as abrasive material and abrasive grain size, are the dominant parameters for the spherical grinding process, as shown in Fig. 1. The optimal spherical grinding parameters for the injection mold steel have not yet been investigated based in the literature. Fig.1. Schematic diagram of the spherical grinding process In recent years, some research has been carried out in determining the optimal parameters of the ball burnishing process Fig. 2. For instance, it has been found that plastic deformation on the workpiece surface can be reduced by using a tungsten carbide ball or a roller, thus improving the surface roughness, surface hardness, and fatigue resistance. The burnishing process is accomplished by machining centers and lathes. The main burnishing parameters having significant effects on the surface roughness are ball or roller material, burnishing force, feed rate, burnishing speed, lubrication, and number of burnishing passes, among others. The optimal surface burnishing parameters for the plastic injection mold steel PDS5 were a combination of grease lubricant, the tungsten carbide ball, a burnishing speed of 200 mm/min, a burnishing force of 300 N, and a feed of 40 μm. The depth of penetration of the burnished surface using the optimal ball burnishing parameters was about 2.5 microns. The improvement of the surface roughness through burnishing process generally ranged between 40 and 90. Fig. 2. Schematic diagram of the ball-burnishing process The aim of this study was to develop spherical grinding and ball burnishing surface finish processes of a freeform surface plastic injection mold on a machining center. The flowchart of automated surface finish using spherical grinding and ball burnishing processes is shown in Fig. 3. We began by designing and manufacturing the spherical grinding tool and its alignment device for use on a machining center. The optimal surface spherical grinding parameters were determined by utilizing a Taguchi’s orthogonal array method. Four factors and three corresponding levels were then chosen for the Taguchi’s L18 matrix experiment. The optimal mounted spherical grinding parameters for surface grinding were then applied to the surface finish of a freeform surface carrier. To improve the surface roughness, the ground surface was further burnished, using the optimal ball burnishing parameters. Fig. 3. Flow chart of automated surface finish using spherical grinding and ball burnishing processes 2 Design of the spherical grinding tool and its alignment device To carry out the possible spherical grinding process of a freeform surface, the center of the ball grinder should coincide with the z-axis of the machining center. The mounted spherical grinding tool and its adjustment device was designed, as shown in Fig. 4. The electric grinder was mounted in a tool holder with two adjustable pivot screws. The center of the grinder ball was well aligned with the help of the conic groove of the alignment components. Having aligned the grinder ball, two adjustable pivot screws were tightened; after which, the alignment components could be removed. The deviation between the center coordinates of the ball grinder and that of the shank was about 5 μm, which was measured by a CNC coordinate measuring machine. The force induced by the vibration of the machine bed is absorbed by a helical spring. The manufactured spherical grinding tool and ball-burnishing tool were mounted, as shown in Fig. 5. The spindle was locked for both the spherical grinding process and the ball burnishing process by a spindle-locking mechanism. Fig.4. Schematic illustration of the spherical grinding tool and its adjustment device Fig.5. a Photo of the spherical grinding tool b Photo of the ball burnishing tool 3 Planning of the matrix experiment 3.1 Configuration of Taguchi’s orthogonal array The effects of several parameters can be determined efficiently by conducting matrix experiments using Taguchi’s orthogonal array. To match the aforementioned spherical grinding parameters, the abrasive material of the grinder ball with the diameter of 10 mm, the feed rate, the depth of grinding, and the revolution of the electric grinder were selected as the four experimental factors parameters and designated as factor A to D see Table 1 in this research. Three levels settings for each factor were configured to cover the range of interest, and were identified by the digits 1, 2, and 3. Three types of abrasive materials, namely silicon carbide SiC, white aluminum oxide Al2O3, WA, and pink aluminum oxide Al2O3, PA, were selected and studied. Three numerical values of each factor were determined based on the pre-study results. The L18 orthogonal array was selected to conduct the matrix experiment for four 3-level factors of the spherical grinding process. Table1. The experimental factors and their levels 3.2 Definition of the data analysis Engineering design problems can be divided into smaller-the better types, nominal-the-best types, larger-the-better types, signed-target types, among others [8]. The signal-to-noise S/N ratio is used as the objective function for optimizing a product or process design. The surface roughness value of the ground surface via an adequate combination of grinding parameters should be smaller than that of the original surface. Consequently, the spherical grinding process is an example of a smaller-the-better type problem. The S/N ratio, η, is defined by the following equation η ?10 log10mean square quality characteristic ?10 log10 where yi observations of the quality characteristic under different noise conditions n number of experiment After the S/N ratio from the experimental data of each L18 orthogonal array is calculated, the main effect of each factor was determined by using an analysis of variance ANOVA technique and an F-ratio test. The optimization strategy of the smaller-the better problem is to maximize η, as defined by Eq. 1. Levels that maximize η will be selected for the factors that have a significant effect on η. The optimal conditions for spherical grinding can then be determined. 4 Experimental work and results The material used in this study was PDS5 tool steel equivalent to AISI P20, which is commonly used for the molds of large plastic injection products in the field of automobile components and domestic appliances. The hardness of this material is about HRC33 HS46. One specific advantage of this material is that after machining, the mold can be directly used for further finishing processes without heat treatment due to its special pre-treatment. The specimens were designed and manufactured so that they could be mounted on a dynamometer to measure the reaction force. The PDS5 specimen was roughly machined and then mounted on the dynamometer to carry out the fine milling on a three-axis m

注意事项

本文(外文翻译——基于注塑模具钢研磨和抛光工序的自动化表面处理-模具设计.doc)为本站会员(人生一小?#20445;?#20027;动上传,文库吧仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文库吧(发送邮件至[email protected]或直接QQ联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




[email protected] 2015-2021 wenkub网站版权所有
经营许可证编号:鄂ICP备17016276 

北京pk10双面盘预测
<acronym id="6i0ao"><small id="6i0ao"></small></acronym>
<acronym id="6i0ao"><center id="6i0ao"></center></acronym>
<acronym id="6i0ao"><small id="6i0ao"></small></acronym>
<acronym id="6i0ao"><center id="6i0ao"></center></acronym>