<acronym id="6i0ao"><small id="6i0ao"></small></acronym>
<acronym id="6i0ao"><center id="6i0ao"></center></acronym>
首页资源大厅技术方案

反分析原理【精品】文库吧文档共享平台

2019-05-04 格式:DOC

《反分析原理【精品】文库吧文档共享平台》提供在线全文查看,更多与《反分析原理【精品】文库吧文档共享平台》相关内容,请进入www.gokv.tw查看。

1、建立反演计算方程的输入量,因而通常是进行反演计算的主要依据。岩土体在工程施工过程中受到扰动后发生的现象,主要是继续变形和破坏,如果归诸于力学原理,则是岩土体的应力场,应变场,位移场和稳定状态在受到扰动的过程中发生了变化。鉴于受力物体的变形,内力,应力和荷载之间存在依存关系,可以推理如能取得岩土体在受到扰动的过程中发生的应力,应变,内力或位移变化?#26723;?#37327;测信息,则可望通过正演计算的逆过程得出初始地应力的量值和作用方向,以及用于描述岩土介质的受力变形性态的特性参数。 . 位移量测信息 围岩地层中位移量测分为洞周表面各点的收敛位移量测如拱顶下沉,洞周收敛变形,地表沉降,盾构管片接头相对位移等和围岩域内各点的位移量测,主要为围岩径向多点位移,地表深层沉降,水平位移?#21462;? 在软土岩土工程中,位移量测主要有地表沉降,围护结构的水平位移,垂直位移,土体测斜,周围建筑物,道路和官线的沉降及水平位移?#21462;? 位移量又分为绝对位移(相对于不动点)和相对位移(相对于同一测线上的基准测点)两种。 . 内力量测信息 内力量测信息包括扰动应力即由开挖等引起的岩土体应力的变化量和构件(支撑,围护,锚杆及衬砌结构等)轴力,弯矩。其中扰动应力为将来扩展反演量测信息。 . 压力量测信息 压力量测信息包括岩土体内部土压力和结构(喷射混凝土,衬砌,围护结构)与岩土体之间的接触压力两种,为将来扩展反演量测信息。 . 。

2、 (— ) 得到新的单纯形。上式实际上是缩小原来的单纯形,并使最好点仍为缩小后的单纯形的一个顶点。 重复上述单纯形的算法,单纯形的尺寸将会不断缩小,直?#20102;?#23567;到指定的精度范围以内。 .. 阻尼最小二乘法 阻尼最小二乘法在给定参数初?#26723;?#39046;域内,把函数通过泰勒级数展开,通过反复迭代逐渐?#24179;?#30446;标函数的极小值,得到参数的最优解,增加阻尼因子,大大改善了系数矩阵的求逆条件,为了进一步减少初始参数的影响,增加解的稳定性以及收敛速度,具体过程和算法如下: 假设原方程为: (— ) 式中:,分别为系数矩阵,参数矩阵和实测数据阵。 目标函数: (— ) 式中:,分别为位移实测值和有限元计算值,为实测?#26723;?#20010;数, ,为参数个数。 (— ) (— ) = = (— ) 矩阵为在处的Jacobi矩阵。 将在点处Taylor展开到一次项: (— ) (— ) = (— ) 得迭代公式: (— ) 为了保证收敛于最优解,减少初?#26723;?#24433;响,对(-)式进行了改进,增加步长因子得迭代方程: 。

3、异是增加群体多样性的搜索算子,?#30475;?#36873;择之后,新的群体中的每个串的每一位以变异?#24335;?#34892;变异,从而?#30475;?#22823;约发生次变异,为串长。一个低水平的变异?#39318;?#20197;防止整个群体中任一位保持永远收敛到单一值。高水平的变异率产生的实质是随机搜索,?#23454;?#30340;变异率有助于过早收敛到局部最优。 针对岩土工程优化反演的特点,本程序算法设计如下: ()采用二进制编码, ()初始群体规模根据需反演的个数而定,随反演参数的增加而增大, ()采用锦标赛选择,并采用最优保留算法, ()原始目标函数为实测值与计算?#26723;?#24179;方和,属于极小化问题,采用非线性对适应值加速, ()杂交算子,提供两种杂交方式,单点杂交和均?#20173;?#20132;,杂交概率根据种群规模以及杂交方式而定,一般单点杂交概率为.,均?#20173;?#20132;率.,按照锦标赛法选取两个父本进行杂交, ()变异算子,采用了突变变异方式,变异概率随种群规模的增加而减少, ()算法停?#26500;?#21017;,在给定最大迭代代数的前提下,连续代最优?#24471;?#26377;进化,算法终止,但具体多少代也可根据具体情况而定,?#20445;?#31639;法终止。 .. 遗传模拟退火算法 模拟退火(simulated annealing)算法是是局部搜索算法地扩展。它不同于局部搜索之处是以一定地概率选择领域中适应?#21040;?#22909;的解空间,因此,在理论上是全局优化方法。模拟退火算法的核心在于模仿热力学中液体的冻结与结晶或金属熔液的冷却与退火过程。在高温状态下,液体的分子彼此之间可以自由运动。如。

4、索。 计算,并加入到子代。转向() 遗传算子(杂交算子,变异算子以及选择算子)的作用是进行宏观搜索,处理的是大范围搜索问题,而阻尼算子中的搜索过程是极值局部搜索,即微观搜索,处理的是小范围搜索问题和搜索加速问题。阻尼算子的取值应保证在迭代过程中,群体的每个个体都有一定机会进行阻尼算子的搜索。因此,确定阻尼算子概率时需考虑所求问题的阻尼最小二乘法的收敛性,若迭代收敛速度较快,则可取小一些,否则,取大?#22351;恪? 关于优化方法对比以及参数的选取 从计算搜索速度来看,阻尼最小二乘法要优于其他优化方法,混合遗传算法次之,遗传算法最差,但是阻尼最小二乘法和单纯形法的搜索速度都和初始值有关,初始值距真值越近,其搜索速?#20173;?#24555;,反之,越慢,遗传算法,遗传模拟退火算法以及混合遗传算法的搜索速度和很多因素有关,参数范围,搜索精度,种群规模,二进制编码串的长度以及杂交算子,变异算子(初始温度和降温系数,阻尼算子)的合理取?#26723;齲?#21442;数取值范围越大,搜索精?#20173;?#39640;其搜索速?#20173;?#24930;,随种群规模,二进制编码串的长度的增加搜索速度变慢,但由于遗传算法是一种随机搜索方法,因此,其搜索速度也并不是绝对的。 从反演参数的相对误差来看,遗传算法和遗传模拟退火算法较好,混合遗传算法和阻尼最小二乘法次之,单纯形法较差,遗传算法,遗传模拟退火算法以及混合遗传算法的反演参数因反演次数的不同而稍有差异,即采用相同的参数进行反演?#19981;?#24471;到不同的结果,但是差。

5、ines. Journal of Chemical Physics, , : ~. Aarts E H L et al. Simulated Annealing: Theory and Application. Dordrecht: D Reidel Publishing Company,. 潘正君,康立山,陈毓屏著. 演化算法. ?#26412;?#28165;华大学出版社,.。 Thierens D, Goldberg D E. Elitist recombination: an integrated selection recombination GA. Proceeding of first IEEE conference on evolutionary computation,ICEC’,. Kuo T, Hwang S Y. A genetic algorithm with disruptive selection. IEEE Trans on Neural Networks,,(): ~. 康立?#38477;?#33879;. 非数值并行算法—模拟退火算法. 科学出版社,() Lundy M, Mees A. Convergence of an annealing algorithm. Mathematical Programming, , :~. 赵明旺. 非线性最小二乘全局解的混合计算智能算法. 软件学。

6、cka, Helena, Becker, Matthias, Syrjakow, Michael. Genetic algorithms: A tool for modelling, simulation, and optimization of complex systems. Cybernetics and Systems v n Oct-Nov . p - Lee, Chungwon, Machemehl, Randy B. Genetic algorithm, local and iterative searches for combining traffic assignment and signal control. Proceedings of the Conference on Traffic and Transportation Studies, ICTTS, . ASCE, Reston, VA, USA. p:- 刘勇,康立山,陈毓屏著. 非数值并行算法—遗传算法. 科学出版社,, 李大卫,王莉等. 变异算子及其最优变异率. 系统工程与电子技术. ,():-, Metroppolis N, Rosenbluth A, Rosenbluth M et al. Equation of state calculation by fast computing mach。

7、代中随机选取两个父本个体和按一定规则进行杂交,杂交概率决定运算是否进行。若杂交发生,并?#20197;?#20132;后个体为和,计算其适应值和,若,,则接受杂交后个体为和,否则,以一定概?#24335;?#21463;杂交后个体和,即若: (— ) (— ) 则接受和,否则拒绝和。 ()变异算子以概?#39318;?#29992;于下一代的每个串上,若变异发生,则变异后的个体接受与否,按()的接受准则进行。转到()。 .. 混合遗传算法 混合遗传算法把最小二乘法应用到遗传算法,增加阻尼算子,加快遗传算法的收敛速度,收敛精?#21462;? 具体算法如下: ()给定初始值,群体规模,杂交概率,变异概率,阻尼算子概率,阻尼系数等其他相关参数。 ()二进制编码。 ()形成初始种群。 ()计算各个体的适应值,并用非线性加速。 ()判断是否满足收敛条件(在给定最大迭代代数的前提下,连续代最优适应值无进化)。满足条件,算法停止,否则,继续。 ()利用锦标赛法进行选择并复制到下一代(子代)。 ()利用锦标赛法选取两个父本的染色体按一定规则进行杂交(单点杂交或均?#20173;?#20132;),产生子代,杂交概率决定运算是否进行。 ()变异算子以概?#39318;?#29992;于下一代的每个串上。 ()对每个个体以概?#39318;?#29992;阻尼算子,进行最小二乘法搜索,具体如下: 对群体中第个个体产生[,]间随机数,若该随机数大于阻尼算子概率,则进行下面运算, 计算及相应的Jacobi矩阵, 计算搜索方向,不进行一维搜。

8、变化的群体序?#23567;? 为了避免陷入局部最优,在遗传算法中还引入了变异,一方面可以在当前解附近找到更好的解,另一方而还可以保持群体的多样性,确保群体继续进化。 为了寻找最优解,传统方法是用启发式策略,在单个猜测解的邻域探寻,即使算法中允许?#32423;?#22320;跳到解空间中更远的部分,这些启发式算法也往往趋向于陷入局部最优。通过保持在解空间不同区域中多个点的搜索,遗传算法以很大概?#25910;?#21040;全局最优解。 遗传算法中,控制参数的不同对遗传算法的性能产生很大的影响,要想得到遗传算法执行的最优性能,必须确定最优的参数设置。 ()群体规模 群体规模影响到遗传算法的最终性能和效率。当规模太小?#20445;?#36896;成群体的样本量不足,得到的结果不佳,群体规模较大?#20445;?#21487;以阻止早熟而收敛局部最优解,但是计算量大大增加,导致收敛速度过慢。 ()杂交率 杂交概率控制杂交算子的应用的频率,在?#30475;?#26032;的群体中,有个串进行杂交。杂交率越高,群体中串的更新就越快。如果杂交率过高,相对选择能够产生的改进而言,高性能的串被破?#26723;?#35201;更快,特别是小群体种群,致使过早收敛到局部最优解。如果杂交率过低,搜索会由于太小新的探索点而停滞不前。最优杂交率与群体规模有关系,对于中等规模得群体(到),随着群体规模得增加,最优杂交率出现减小得现象。在群体规模为的所有遗传算法中,最优杂交率在.左右,当群体规模在?#20445;?#26368;优杂交率在.左右,当群体规模在?#20445;?#26368;优杂交率在.左右。 ()变异率 变。

9、?#26723;恪? 单纯形是n维空间中n+个点构成的体积不为零的多面体,这n+个点称为该单纯形的顶点。顶点的位置由n维空间中的坐标给出,目标函数f(X)定义于n维空间中。给定顶点的初值X,X…,Xn+后,可求得顶点处的目标函数值f(Xi)。单纯形形心处的坐标为 (— ) 令Xh,Xl分别为目标函数值取最大和最小的顶点,单纯形法就是要寻找一个具有较小目标函数?#26723;?#28857;来取代顶点Xh,方法是通过三种运算:反射,收缩和?#30001;臁? 在反射运算中,新顶点坐标为 (— ) 式中,α称为反射系数。 在计算目标函数后,如有 则以Xμ替代Xh构成新的单纯形。如有 则可以扩大步长,进一步寻找更好的点Xν (— ) 式中β称为扩张系数。这?#20445;?#23545;于Xν点,如有 则以Xν?#27809;籜h,并构成新的单纯形。但是如果有 则以Xμ?#27809;籜h并构成新的单纯形。 如果对于反射后得到的点Xμ,有 ,i≠h 则新的Xh将是相应于目标函数f(Xh)和f(Xμ)中?#31995;?#32773;。设该点为Xh',用收缩算法寻找新点 (— ) 式中,γ为收缩系数。如有 则以Xc?#27809;籜h'构成新的单纯形。若 则以下式取代单纯形的全部顶点 ,i =,,…,n。

10、反分析的原理和计算方法 概述 地下工程开挖过程中,岩土体性态,水土压力和支护结构的受力状态都在不断变化,采用确定不变的力学参数分析不断变化的体?#26723;?#21147;学状态,?#21248;?#19981;可能得到预想的效果。利用软件提供的反分析方法以现场位移或内力增量量测?#26723;?#20026;依据,借助优化反分析方法确定地层性态参数值,并将可使以这些参数值为输入量算得的测点位移计算值与实测值相?#20219;?#24046;为最小的量作为优化反分析解,尔后将其用作预测计算分析的依据。 位移反分析方法可分为正反分析法和逆反分析法两类。后者为正分析的逆过程,计算过程简单,但须先建立求逆公式和编制相应的程序,适用性差。前者为正分析计算的优化?#24179;?#36807;程,一般通过不断修正未知数的试算值?#24179;?#21644;求得优化解,计算机运作时间虽长,但可利用原有正算程序进行计算,便于处理各种类型的反分析问题,并可用于各类非线性问题的分析,适用性强。 地下结构的施工常采用分步开挖,分步支护的方式,其位移,结构内力及岩土层应力等随着施工阶段的变化呈现出一种动态响应过程。因此,有必要将常规的反演分析法与施工模拟过程结合起来,建立一种施工动态反演分析方法。在相同工程及地层条件下,通过利用当前施工阶段量测到的全量或增量信息,来反求地层性态参数和初始地应力参数,进而达到准确预测相继施工阶段的岩土介质和结构的力学状态响应,为施工监控设计提供指导性依据。 量测信息的种类及表达式 在建立的反演分析计算法中,现场量测信息一般用作。

11、应变量测信息 有开挖引起的应变可分为在洞室壁面上发生的应变和在岩土体内部发生的应变两类。前者称为表面应变,后者称为域内应变。在应变量测中常用的是电阻应变片和千分表,其中前者对量测表面应变和域内应变?#38469;?#29992;,后者仅适用于量测表面应变。 目标函数和适应性函数 . 目标函数 隧道及地下结构施工动态反演过程的量测信息拟采用结构变形,内力及地层水平和垂直变形等,待求未知参数X可设定为各地层弹性模量和初始地应力参数。关于待求未知量X的最小二乘目标函数为 (— ) 式中:K为量测信息种类,包括绝对位移,相对位移,结构轴力,弯矩等, (— ) 其中:—任意两施工阶段测点处对应绝对位移,相对位移,结构轴力或弯矩等的计算值和实测值增量,—第i种量测信息种类的测点个数,—加权常数,一般取=。 . 适应性函数 对于岩土工程的位移优化反分析,在应用遗传算法?#20445;?#30001;于目标函数比较小,采用适应性函数 来区分不同的个体(关于遗传算法,详见下节)。 . 优化方法 反演分析中,优化方法和初始?#26723;?#36873;择十分重要,这关?#26723;?#21453;演最终能否获得成功(即获得正确合理的反演结果)。 .. 单纯形法 单纯形法的思想是通过对维空间上顶点的函数值进行比较,通过反射,收缩,?#30001;?#26469;排除函数值最大的点,找到函数值最小的点,并形成新的单纯形,这样逐步?#24179;?#26497;小。

12、 (— ) 使得 同时不?#31995;?#35843;整以改变搜索步长,增加解的稳定性和收敛速?#21462;? 在(-)式中,要求对称半正定矩阵是非奇异的,由于的复杂的非线性,这一要求并不总能满足,造成是病态的或接近病态的,导致收敛速度极慢或计算终止,为此,进行了改进,增加阻尼因子,增大矩阵的主对角线元素,迭代方程为: (— ) Jacobi矩阵元素的求解,用有限差分代替一阶导数: = (— ) 根据对称矩阵的正交分解,可以分解为: = (— ) 为的特征值构成的对角线矩阵,而为的特征向量矩阵,且满足 (— ) [+]=[+]= (— ) (— ) 为的特征值,矩阵[+]的条件数为: cond[+]==cond[] (— ) .. 遗传算法 遗传算法是模拟?#21248;?#36827;化过程搜索全局最优解的方法。 遗传算法的优越性主要表现在它在搜索过程中不容易陷入局部最优解,即使在所定义的适应函数是不连续的,非规则的或?#24615;?#22768;的情况下,它也能以很大的概?#25910;?#21040;全局最优解。 遗传算法象撒网一洋,在参变量空间中进行搜索,由串组成的群体在遗传算子的作用下,同时对空间中不同的区域进行采样计算,从而构成一个不断。

13、果液体徐徐冷却,它的分子就会丧失由于温度而引起的流动性。这时原子就会排列起来而形成一种纯晶体,它们依次?#34892;?#25490;列成几十倍于单个原子大小的距离,这个纯晶体状态就是该系统的最小能量状态。模拟退火就是模拟上述过程的一种通用随机搜索技术。 遗传算法是一?#20013;?#33021;较好的算法,但是它在实际应用中容易产生早熟现象,即在进化群体中少数个体的适应值远大于其他个体的适应值,经过?#22797;?#36845;代后,这些个体就占据了整个群体,进化过程提前收敛。对于传统的遗传算法,竞争是在子代中进行的,而子代和?#22797;?#20043;间没有竞争。这样?#22797;?#20013;的优良个体有可能丢失。一些算法通过直接将群体中的最优解放入下一代群体中来保存最优解,但这有可能引起早熟收敛的问题。此外,由于遗传算法采用的是随机交叉和变异因子,交叉和变异后的个体不一定都是优良个体,这会破坏原有的优良个体,影响算法的性能。 将遗传算法和模拟退火算法耦合,形成模拟退火算法,对杂交和变异后个体引入Boltamann接受准则,同?#22797;?#36827;行竞争,?#22351;?#36991;免了算法的早熟问题,同时使群体中的最优解得到保留,并利用模拟退火的爬山性能改善了遗传算法的性能。具体算法如下: ()初始化参数:群体规模,杂交概率和变异概率,退火初始温度,温度冷却系数。 ()随机产生初始解群。 ()个体适应值评价。 ()判断是否满足收敛条件。满足条件,算法停止,否则,继续,。 ()利用锦标赛选择复制?#22797;?#20010;体到子代。 ()利用杂交算子从当前。

14、别很小,接近全局最优,从而也?#24471;?#20102;其具有全局寻优的特点,而单纯形法和阻尼最小二乘法的反演结果会因初始参数的不同而有很大差别,特别是单纯形法,初始值取值?#22351;保?#20250;导致反演失败。 从目标函数真值来看,阻尼最小二乘法同遗传算法,遗传模拟退火算法基本一样,混合遗传算法次之,单纯形法最差。遗传算法,遗传模拟退火以及混合遗传算法的最终目标函数值和计算精度要求以及程序控制条件(终止条件)有关。 从算法的可靠性方面来看,单纯形法可靠性稍差,主要由于参数相差较大时导致搜索空间退化低维空间而失败,因此,在参数相差较大,特别是?#27492;?#27604;和弹性模量或粘性系数同时参加反演?#26412;?#23384;在此问题,这时应增加?#27492;?#27604;的的搜索步长,阻尼最小二乘法的可靠性稍好,但是,在参数相差较大,而且,较小的参数对反演量测信息不敏感?#20445;?#23601;会导致反演失败,这时应增加不敏感参数的搜索步长。遗传算法,遗传模拟退火算法以及混合遗传算法的可靠性较好,但是参数取值范围以及算子的选取对反演的成败很关键。 参考文献 吕爱钟,蒋斌松著. 岩石力学反问题. 煤炭工业出版社,. ~ 刘钦圣编著. 最小二乘法问题计算方法. ?#26412;?#24037;业大学出版社,, 薛履中编著. 工程最优化技术. 天津大学出版社. 王士同. 人工智能中的模糊启发式搜索技术. 机械工业出版社, 孙艳丰,王众托. 遗传算法在优化问题中的应用研究进展. 控制与决策,, (): ~ Szczerbi。

本文标题是:反分析原理【精品】文库吧文档共享平台,欢迎您的阅读。

相关文件如下:

【offic文件】-反分析原理

反分析原理(序列版1)

反分析原理√?#30740;?#27491;

反分析原理【可编辑版本】-www.gokv.tw

反分析原理【精品】文库吧文档共享平台

反分析原理-图文可编辑文库吧文档共享平台

【修订号**-反分析原理】文库吧文档共享平台

【WORD】-反分析原理精品

反分析原理【未删减版本】

【办公文件√反分析原理】

北京pk10双面盘预测
<acronym id="6i0ao"><small id="6i0ao"></small></acronym>
<acronym id="6i0ao"><center id="6i0ao"></center></acronym>
<acronym id="6i0ao"><small id="6i0ao"></small></acronym>
<acronym id="6i0ao"><center id="6i0ao"></center></acronym>